Saturday, April 16, 2011

Cauchy Product (1 − 1 + 1 − 1 + ... )

Perquisites :


 given


Cauchy product
\begin{array}{rcl}
c_n & = &\displaystyle \sum_{k=0}^n a_k b_{n-k}=\sum_{k=0}^n (-1)^k (-1)^{n-k} \\[1em]
 & = &\displaystyle \sum_{k=0}^n (-1)^n = (-1)^n(n+1).
\end{array}
then, the product is 
\sum_{n=0}^\infty(-1)^n(n+1) = 1-2+3-4+\cdots.
therefore,
(1)
based  on geometric series (GS.ID.1)
 \sum_{k=0}^{n} a r^k = \frac{a}{1-r}. 
(2)
a=1 , r=-1 in the following equation
(3)
from (2) and (3)
(4)


from (1) and (4)

No comments:

Post a Comment