Wednesday, May 18, 2011

Zeta-Gamma Function

GZ.ID.1:  Fundamental Zeta-Gamma  function
the relation between Zeta function and Gamma function can be represented in the following form:




Proof

Given
(1)
(2)

 (3)

(4)
substituting (4) into (3)


(5)


(6)

(7)

(8)
Based on Geometric Series of Exponential (GS.ID.2),

(9)

(10)

(11) 
based on (10) and (11) , 


 
 (12) 
 
(13) 
(14) 
 
 (15) 

 (16) 

GZ.ID.2:   Zeta-Gamma  function (Trigonometric)



Proof

Given

(1)
 (2)
(3)


(4)
substituting (4) into (1) ,

(5)
(6)


(7)
substituting (2) into (7) :
(8)

from (16),  at (GZ.ID.1)  ,

(9)
(10)
based on (9) and (10) , then


 multiplying and dividing the denominator by   ,   and based on (3) therefore 



GZ.ID.3:   Zeta-Gamma  function

 
Given


(1)


 (2)

 (3)
substitute (3) into (2) , 

(4)

 (5)

(6)
differentiate (6) ,

(7)
substitute (7) into (5) ,

(8)



No comments:

Post a Comment